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Temporal issues consistently factor into decisions, yet surprisingly few research studies have 
explored how to model temporal cognition.  We developed an Adaptive Control of Thought – 
Rational (ACT-R, e.g., Anderson & Lebiere, 1998) model to help account for how people estimate 
time, one of many issues in temporal cognition.  According to the model, people adjust the lengths of 
words through abbreviation or extension and produce the words at a rate in tune with the rate of 
environmental events.  This procedure allows an individual to synchronize with regular intervals of 
time in the environment and produce just-in-time responses to events.  This type of approach 
incorporates a behavioral aspect to time estimation and an ACT-R model of temporal cognition that 
requires no changes to the architecture of ACT-R. 

 
INTRODUCTION 

 
Temporal cognition is a field given 

surprisingly little attention in cognitive 
modeling.  Here, we focus on a counting task in 
which rhythmic intervals improve cognitive 
performance (Carlson & Cassenti, 2004) over 
unpredictably timed intervals and describe an 
ACT-R (Anderson & Lebiere, 1998) model that 
matches these data and outlines a mechanism of 
time estimation (see Cassenti, 2004, for details). 
 
Empirical study 
 

Carlson and Cassenti (2004) conducted a 
study in which participants were asked to count   
thirty to eighty white asterisks (total determined 
randomly) that appeared one-at-a-time in the 
center of a black background.  Each participant 
had ten trials with intervals of fixed step 
duration (onset of one asterisk to the onset  of  
the  next)  of  550 ms. Another ten trials were 
presented with a varied interval length, 
randomly  selected  every trial  from  a pool of 
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interval lengths – 400, 500, 600, or 700 ms.  For 
every step, 200 ms was devoted to the asterisk 
appearance and the rest of the time for that step 
(e.g., always 350 ms in the rhythmic conditions) 
was devoted to a blank screen.  All thirty-three 
participants were instructed to count all the 
asterisks and type their final count into a 
response box that appeared at the offset of the 
final asterisk. 
 

Carlson and Cassenti (2004) filtered the data 
to exclude all trials in which responses exceeded 
correct by an absolute error of five (these 
infrequent errors were typically off by about ten 
suggesting a typing error or a participant-
derived strategy of counting by ones and 
misremembering the ten’s digit).  Participants 
counted with greater accuracy on rhythmic trials 
(82.9% correct) than varied trials (52.7%).  In 
addition, a distinct pattern of errors (i.e., the 
response minus the correct answer) emerged 
from the data.  The distribution of errors on 
rhythmic trials showed predominant 
undercounting (i.e., response lower than correct 
answer) and the distribution of errors on varied 
trials showed predominant overcounting (i.e., 



response higher than correct).  The average 
signed error of each timing condition (i.e., the 
size and direction of response from correct) 
were –0.163 and 0.405 for rhythmic and varied 
trials, respectively. 
 
Theoretical framework 
 

Carlson and Cassenti’s (2004) pattern of 
results suggests that participants tuned a 
temporal cognitive mechanism to approximate 
the rhythmic interval duration and decreased the 
frequency of overcount errors.  Undercount 
errors are therefore errors that naturally occur 
from some mechanism of cognition and cannot 
be prevented through the temporal mechanism.  
Indeed the frequency of undercount errors is 
about the same in both rhythmic and varied 
trials with the frequency of additional overcount 
errors in varied trials overwhelming the number 
of undercount errors in average signed error. 

 
The temporal mechanism not only tuned to 

the rhythmic interval in the rhythmic condition, 
but it may have tuned to the shortest of the 
varied intervals in the varied condition (i.e., to 
ensure that the system was always ready for the 
next count, Cassenti, 2004).  In the varied 
condition, overcounts may have predominated 
because the system counted twice, once while 
waiting for the next event and once when the 
item appeared.  Undercounts may result from 
using the same number twice and would occur 
regardless of whether the temporal mechanism 
tuned to the event rhythm. 
 
Previous model of timing 
 

The challenge in modelling the above 
theoretical framework is how to represent the 
temporal mechanism.  Taatgen, van Rijn, and 
Anderson (2004) described a model of temporal 
cognition that used direct readings from a 
mental clock to provide an up-to-date number 
representing interval length and a degree of 
normally-distributed noise.  The model was 
based on research by Matell and Meck (2000) 
that proposed a neuropsychological timekeeper 

that provided an explicit representation of time.  
The present model represents a different 
approach to modeling a timekeeper mechanism.  
Instead of including a modular timekeeper that 
provides interval length directly, the present 
model estimates time through its own behavior. 
 

COUNTING MODEL 
 

As with Taatgen et al. (2004), we chose to 
use ACT-R (Anderson & Lebiere, 1998) as our 
modeling architecture.  ACT-R is a cognitive 
architecture, defined as: a theory for simulating 
and understanding human cognition.  As 
research continues, ACT-R evolves towards a 
system that can perform the full range of human 
cognitive tasks: capturing in detail the way we 
perceive, think about, and act on the world.     
 

The ACT-R architecture is realized as a 
production system, by representing procedural 
knowledge in the form of if--then rules 
(productions) to process, store, and retrieve 
declarative memory, in a hybrid semantic 
network.  ACT-R is also capable of compiling 
these productions to generate new procedural 
knowledge.     
 

ACT-R has two classes of declarative 
memory, chunks and goals (which technically 
are a special type of chunk). The goals specify 
the information from the current step and guide 
production activation.  The goal-specified 
production transforms the state of the problem 
in the environment or in memory and depends 
on chunks to provide information needed in the 
problem.  In the present model, the chunks are 
primarily numbers and the productions 
increment the running total in synchronization 
with the appearance of items. 

 
The model operates by following a 

prescribed sequence of productions for each 
step.  The model begins each step by retrieving 
the name of the current number and covertly 
producing the name.  Once the number name is 
produced, the model either waits to perceive the 
next item or, if the item appears directly after 



the name productions, immediately perceives 
the item.  After perception productions fire, the 
model chooses a new number to assign to the 
perceived item.  If the new item is a response 
request, the model reports the current number in 
memory rather than retrieving a new number. 

 
The model increments by using ACT-R’s 

activation mechanisms.  When a number is 
selected, it adds activation strength to the 
number one higher than itself.  A new number is 
selected if it passes a retrieval threshold set by 
the model developer.  While the current number 
is in use, its activation decreases through ACT-
R’s decay mechanism and typically falls below 
the retrieval threshold, leaving the next number 
as the only number in memory to exceed the 
threshold. 

 
Whereas overcounts are caused by a strategy 

of timing new counts to occur before the 
appearance of a new item, the model suggests 
that undercounts are caused by system-wide 
declarative memory activation noise.  Noise in 
ACT-R is defaulted to zero.  In the present 
model, noise was set to 0.028.  This small level 
of noise causes the activation of the current 
number to rarely exceed the next number, 
resulting in a small number of undercounts.  

 
The model estimates time by pronouncing 

each number in ACT-R’s output buffer. The 
time to speak a number is manipulated by 
changing the default production times on all 
speaking productions to equal the rhythmic 
interval length or the minimum length of the 
varied intervals. This strategy creates a 
mechanism by which the model can produce 
just-in-time responding in the rhythmic 
condition and a mechanism to prepare the 
number as soon as it might be needed in the 
varied condition.  This is implemented in the 
model by including syllable slots in the number 
chunks and designing the syllables to be 
constrained around two or three syllables to 
keep all numbers at a constant length.  In the 
varied condition, number names are constrained 
to two syllables (e.g., twenty-five is twen-five) 
and in the rhythmic condition number names are 

three syllables long (e.g., twenty five is twent-
ty-five).   This strategy is analogous to the one 
used by children playing hide-and-go-seek, who 
turn around with eyes covered and repeat, “One 
Mississippi, two Mississippi . . .” to some pre-
arranged number.  Hinton and Rao (2004) 
demonstrated that this type of strategy improves 
performance in a temporal task. 

 
When the speaking productions end before 

the item appears (i.e., in approximately 3/4 of 
varied trials and rarely in rhythmic trials) the 
model will call a wait production to give the 
item time to appear.  In the model there are two 
wait productions, one to wait and one to wait but 
also increment to the next total.  In order to 
match the results of the experiment, the utility of 
picking the wait-and-increment production was 
set to 0.01 the utility of the wait-and-not-
increment production with an expected gain 
noise of 1.8. These parameter changes gave a 
small chance that the model would overcount in 
a given sequence. Activating the second 
production can be seen as a failure to inhibit the 
prepotent response of incrementing when 
finished producing the name of the current total.   

 

 
 
Figure 1. Time sequence of one step of model.  Panel A 
shows rhythmic counting, tuned to the event rhythm.  
Panel B shows varied counting, when the step interval 
is 200 ms longer than the cognitive productions cover.  
The wait period may result in an overcount. 

 
Table 1 and Figure 2 display the model fit to 

Carlson and Cassenti (2004).  The model 
replicated the data reasonably well in all 



conditions after we removed the data from one 
participant.  The participant’s data skewed the 
marginal mean of varied signed error (the error 
filter which removed all errors greater than five 
in magnitude left only one trial of positive five 
for this participant and left the average signed 
error higher than reflected in the other data 
points). 
 
Table 1. Comparison of model to empirical (human) 
data including Pearson correlation (r) and a measure of 
the amount of variability accounted for by the model 
(R2). 
 

 
Rhy. 
Acc 

Var. 
Acc 

Rhy. 
SignedE 

Var. 
SignedE 

Human 0.837 0.544 -0.165 0.262 
Model 0.878 0.431 -0.153 0.078 
r 0.940 0.953 0.932 0.937 
R2 0.883 0.908 0.868 0.877 
 
* Note: Rhy stands for rhythmic condition, Var stands 
for varied condition, Acc stands for accuracy, and 
SignedE stands for signed error. 
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Figure 2.  Comparison of human and model accuracy 
(Acc) and signed error (Error). 
 

Neurological basis 
 

The Taatgen, et al. (2004) model adopted the 
neuropsychological approach of Meck and 
Matell (2000), which cited the basal ganglia as 
the most likely brain region corresponding to a 
mental timekeeper.  Researchers have 
traditionally tied the basal ganglia to motor 
control, however Meck and Matell (2000) 
simply attach the new function of timekeeper to 
the basal ganglia rather than establishing a 
connection between motor behavior and time 
estimation.  

 
Jones and Boltz (1990) suggest that effectors 

are muscle groups that help people maintain a 
rhythm (e.g., a guitarist tapping a foot to a beat).  
An alternative to the Meck and Matell (2000) 
theory that timekeeping is an additional function 
of the basal ganglia is that the basal ganglia 
move effectors and adjust those effectors to a 
rhythm in the environment.  The basal ganglia 
would not then contain a timekeeper module, 
but instead control muscles to adjust the 
movements to temporal feedback provided by 
the environment.  This is analogous to the 
coordination of spoken syllables in the present 
model and precludes the need for an additional 
temporal module in ACT-R as suggested by 
Taatgen et al. (2004). 
 
Multi-tasking model extension  
 
Brown (1997) demonstrated that people who 
estimate time, while engaging in a secondary 
activity show a decline in temporal 
performance.  A revision of the present model 
might also show a decline in performance as 
Taatgen, Anderson, Dickison, and van Rijn 
(submitted) demonstrated for the Taatgen et al 
(2004) model.  In a possible revision, the model 
may simply adjust the timing of actions required 
to perform the secondary task to the temporal 
interval required in the time estimation task.  
This strategy should reveal decline in either the 
temporal or secondary task performance as the 
model attempted to fit likely opposing temporal 
structures upon one another.  Reproducing the 



syllables of numbers is more temporally 
malleable than performing the required actions 
of a secondary task. 
 
Limitations of model 
 
 The present model fits the intended empirical 
data; however more work is necessary to model 
other temporal studies and other temporal 
processes.  First, the present model does not 
address the learning of rhythmic intervals.  
Although Cassenti and Carlson (2004) show that 
learning a rhythmic interval approximating the 
one in the present empirical study occurs within 
about the first ten steps, temporal learning must 
still take place.  Taatgen et al. (2004) address 
learning in their model, but the present model 
needs further work to model this aspect of 
temporal cognition.   
 

Another limitation of the model is the lack of 
correspondence between the timing conditions 
of the empirical study and those in the model.  
Currently, the model presents to-be-counted 
items 85 milliseconds (ms) longer than in the 
actual rhythmic condition (as shown in Figure 2) 
and 300 ms longer in varied due to the relative 
slowness of ACT-R’s perceptual processing and 
the unpredictable timing of the end of the wait 
production, respectively, compared to the people 
in the experiment.   

 
CONCLUSIONS 

 
The present model represents an 

interpretation of the mental processes that 
produced the results in Carlson and Cassenti 
(2004).  The current approach represents an 
alternative representation of temporal cognition 
to Taatgen et al. (2004) by removing the 
necessity of adding a new module to ACT-R and 
thereby changing the structure of ACT-R.  The 
present version of the model is undergoing 
revisions, such that later versions should 
encompass more temporal cognitive 
phenomenon and produce an effective and 
realistic model of a previously inadequately 

explained portion of human cognition.  
Temporal factors are important to virtually all 
decisions and a model of temporal cognition 
may help guide human factors engineers design 
better training regimens or products that rely on 
existing human timing mechanisms. 
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